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Abstract

In this paper we propose a tractable model of behavior in threshold public

good games. The model is based on learning direction theory. We find that

individual behavior is consistent with the predictions of the model. Moreover,

the model is able to accurately predict the success rate of groups in providing

the public good. We apply this to give novel insight on the assurance problem

by showing that the problem (of coordinating on the inefficient equilibrium of

no contributions) is only likely with a relatively low endowment. In developing

the model we compare and contrast best reply learning and impulse balance

theory. Our results suggest that best reply learning provides a marginally

better fit with the data.
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1 Introduction

A threshold public good is a public good that is provided if and only if total contri-

butions towards its provision reach some critical threshold. Many goods and services

can be approximated as threshold public goods (Taylor and Ward, 1982; Andreoni,

1998; van Lange et al., 2013; Mak et al., 2015; Hudik and Chovanculiak, 2017; Iris

et al., 2019). A fundamental question is whether such goods are provided at the

Pareto efficient level. Experimental evidence suggests they are not. In particular,

the observed success rates of providing threshold public goods (when the choice set

is continuous) are usually in the range of 30 to 70 percent (e.g. Croson and Marks,

2000; Cadsby et al., 2008; Alberti and Cartwright, 2015).1 Such inefficiency has been

observed in many different settings and is a robust empirical result. What is lacking

is a theoretical model that can explain it.

The approach we take in this paper is based on learning direction theory. The

theory says that players will have a tendency to change their behavior in a way that

is consistent with ex-post rationality (Selten and Stoecker, 1986; Selten, 1998, 2004;

see also Cason and Friedman, 1997, 1999). It, thus, encapsulates a general notion

of adaptive learning in which players adjust behavior based on the last iteration of

play. We apply learning direction theory to threshold public good games and derive

two testable hypotheses. These hypotheses detail ‘experience conditions’ in which we

would expect players to increase their contribution, to decrease their contribution,

or to leave their contribution unchanged. We also show that predictions are sensi-

tive to whether or not there is a refund. In particular, we analyse individual level

data from experiments reported in Alberti and Cartwright (2015) and Cartwright

and Stepanova (2015) to test our hypotheses. We find strong support for learning

direction theory.

Learning direction theory does not, of itself, allow us to model and predict success

rates in providing the public good. To go this extra step we compare and contrast two

alternative ways of modelling ex-post rationality - best reply and impulse balance.

1It has been shown that various institutions such as sanctions (Andreoni and Gee, 2015), mem-
bership fee (Bchir and Willinger, 2013), refund bonus (Cason and Zubrickas, 2015) or requirement
for full agreement (Alberti and Cartwright, 2016) can increase efficiency above the ‘baseline’ level.
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Best reply learning posits that players will change their contribution in proportion

to the gap between their last contribution and that which was ex-post optimal (Fu-

denberg and Levine, 1998). For instance, if a player contributes $20 but can see it

would have been optimal to contribute $30 then she will increase her contribution in

proportion to the $10 gap. By contrast, impulse balance theory posits that players

will change their contribution in proportion to ex-post impulse where impulse is mea-

sured by foregone profit (Selten, 2004; Ockenfels and Selten, 2005, 2014; Selten and

Chmura, 2008; Chmura et al., 2012). For instance, suppose in our previous example

that by contributing $30 the player would have increased her payoff by $50. Then

she will increase her contribution in proportion to the $50 foregone payoff.

We show that the predictions of best reply learning and impulse balance theory

diverge in the case where contributions fall ‘just short’ of the threshold. Best reply

learning posits that a player will have a tendency to increase her contribution a ‘little

bit’ because there was only a small shortfall. By contrast, impulse balance theory

posits that she will have a tendency to increase her contribution a lot because there

is a large payoff gain from reaching the threshold. This prediction is consistent with

the psychology literature on counter-factual thinking (e.g. De Cremer and van Dijk,

2010; Scholl and Sassenberg, 2014). It provides a way to directly compare the two

models of learning. We find that both models provide, overall, good predictions of

success rates. Best reply learning seems, however, to provide the better fit with both

individual and group level data.

Learning direction theory is particularly appealing for our purposes because it can

model deviations from Nash equilibrium (Selten and Chmura, 2008). This is cru-

cial because there is strong evidence that play in threshold public good games does

not converge to equilibrium. For instance, groups that behave consistent with Nash

equilibrium in one round of repeated interaction usually deviate from Nash equilib-

rium in subsequent rounds (e.g. Cadsby and Maynes, 1999). Theoretical analysis

of threshold public good games has to, therefore, take account of non-equilibrium

behavior. In Section 5 we show that a model based on learning direction theory

can accurately predict success rates at providing the public good. In doing so we

revisit the results of Cartwright and Stepanova (2015) looking at whether a refund
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increases success in providing the public good. We show that a refund is likely to

increase efficiency (relative to the setting of no refund) only if the endowment is very

low. This has interesting implications, as we discuss in Section 5, on the extent to

which inefficiency in threshold public good games is driven by the assurance problem

or coordination problem. Our results suggest the coordination problem is foremost.

In relating our work to that on threshold public good games we highlight that

our focus is on games with a continuous choice set.2 Such games are of wide appli-

cation and are most often used in the experimental literature. There is, however,

a distinct lack of theoretical modeling of this type of game. Instead, the theoret-

ical literature has almost exclusively focused on threshold public good games with

a binary choice set (e.g. Palfrey and Rosenthal, 1984; Rapoport, 1985, 1987; Au,

Chen, and Komorita, 1998; Offerman, Sonnemans, and Schram, 2001; Makris, 2009;

Cartwright and Stepanova, 2017; Spiller and Bolle, 2017). Given that very different

issues arise with a continuous choice set, as opposed to binary choice set, (Suleiman

and Rapoport, 1992; Cadsby and Maynes, 1999) it is crucial to develop theoretical

insight specific to the continuous case.

There are two papers we know of that offer theoretical insight on threshold public

good games with a continuous choice set. First, Bagnoli and Lipman (1989) show

that every perfect Nash equilibrium of a continuous threshold public good game

(with refund) results in the public good being provided.3 This prediction of a 100

percent success rate does little to explain the experimentally observed success rates

well below 100 percent. Second, Suleiman and Rapoport (1992) question whether

subjects in a threshold public good game behave consistent with expected utility

maximization or, what they call, a cooperative model. They found some support for

both models, but also found that neither model was able to predict contributions

with much accuracy.4 A new approach, therefore, is needed and in this paper we

2Strictly speaking we shall consider games where the choice set is discrete, but large.
3A related theoretical literature considers the subscription game, which is a form of threshold

public good game (e.g. Admati and Perry, 1991; Laussel and Palfrey, 2003; Barbieri and Malueg,
2008). For the class of game considered in the experimental literature (i.e. simultaneous move
games of complete information) the prediction would again be that groups efficiently provide the
public good.

4More specifically, in their experiments Suleiman and Rapoport (1992) obtained the beliefs of a
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provide an approach that appears to work well in capturing both individual and

aggregate level behavior.

We proceed as follows: In Section 2 we introduce threshold public good games.

In Section 3 we detail the predictions of learning direction theory and the main

assumption of impulse balance theory. In Section 4 we test the predictions of learning

direction theory with experimental data. In Section 5 we show how impulse balance

theory can be used to predict aggregate outcomes. In Section 6 we conclude.

2 Threshold public good games

We shall consider variations of a simultaneous move, symmetric threshold public good

game. A game is characterized by four positive integers: the number of players n, the

size of endowment E, a threshold T , and a value of the public good V . Each player

in set N = {1, ..., n} is endowed with E units of a private good. Simultaneously,

and independently of each other, players decide how much of their endowment to

contribute towards a public good. For each player i ∈ N , let xi ∈ {0, 1, ..., E} denote

the contribution of player i. Let Y =
∑n

j=1 xj denote total contributions and let

Y−i = Y − xi denote the total contribution of players other than i.

If total contributions, Y , equal or exceed the threshold T then the public good

is provided and each player receives an additional V units of private good. If total

contributions are less than the threshold then the public good is not provided. We

shall assume that if total contributions are above the threshold there is no rebate of

the excess contributions.5 If total contributions are less than the threshold then we

allow two possibilities, either (i) players get a full refund (R) of their contribution,

or, (ii) they get no refund (NR) of their contribution. In the case of a full refund

subject about the likely contributions of others. From this one can ask whether own contribution is
consistent with beliefs. They found evidence of consistency with both an expected utility model and
cooperative model. This did not, however, translate into an accurate prediction of contributions.
Also note, that such predictions rely on knowing the beliefs of subjects. To apply these models in
a general setting, therefore, one would require a model of belief formation.

5This is standard in the empirical literature, e.g. Cadsby et al. (2008). Exceptions include
Coats et al. (2009).
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the payoff function of player i ∈ N can be written

πi(xi, Y−i) =

{
E − xi + V if xi + Y−i ≥ T

E if xi + Y−i < T
.

In the case of no refund the payoff function of player i ∈ N can be written

πi(xi, Y−i) =

{
E − xi + V if xi + Y−i ≥ T

E − xi if xi + Y−i < T
.

It will be assumed that nV > T meaning that it is socially efficient to provide

the public good. It will also be assumed that nE ≥ T meaning that it is feasible for

players to provide the good.

2.1 Nash Equilibria

To provide a starting point for the analysis we describe the set of Nash equilibria.

Vector of contributions (x∗1, ..., x
∗
n) is a pure strategy Nash equilibrium of the game

if and only if πi(x
∗
i , Y

∗
−i) ≥ πi(xi, Y

∗
−i) for all xi ∈ {0, 1, ..., E} and i ∈ N . There

are typically multiple pure strategy Nash equilibria in simultaneous threshold public

good games. These can be partitioned into two broad categories. There is a set

of equilibria where the sum of contributions equals the threshold and also a set of

equilibria where the sum of contributions is less than the threshold. We describe

each in turn.

It is simple to show that there will always exist a set of Nash equilibria with

public good provision where

x∗i + Y ∗−i = T and x∗i ≤ V

for all i ∈ N . If min {E, V } > T/n there will be several of such equilibria. All of

the equilibria of this type yield a total payoff to players of nV − T but differ in how

this payoff is distributed amongst players. A player who contributes relatively less

receives a relatively higher payoff.

If T > min {E, V } then there will also exist a set of Nash equilibria with no public
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good provision. In the case of full refund this set includes any vector of contributions

(x∗1, ..., x
∗
n) where

x∗i + Y ∗−i < T and T − Y ∗−i > min {E, V }

for all i ∈ N . In interpretation, the public good is not provided and it was not in

the interests of any player to contribute enough to satisfy the threshold. In this case

every player receives payoff E. In the case of no refund the set of equilibria with no

public good provision consists of only the zero vector (0, ..., 0). Given that the public

good is not provided and there is no refund, any contribution is costly.

3 Ex-post rationality

In this section we apply learning direction theory. The theory says that players

will have a tendency to adjust their behavior in accordance with ex-post rationality

(Selten and Stoeker, 1986; Selten, 1998; Selten et al., 2005). This does not mean

players will always adjust behavior in accordance with ex-post rationality; rather,

there is a tendency to do so that is stronger than would be expected from random

behavior. This allows us to make qualitative predictions on the tendency of players

to increase or decrease their contribution.

To formalize the notion of ex-post rationality, consider a vector of contributions

(x′1, ...x
′
n). Let exi denote the ex-post optimal contribution of player i, where6

exi = arg max
xi∈{0,...,E}

πi
(
xi, Y

′
−i
)
.

We denote by πi = πi
(
x′i, Y

′
−i
)

the payoff received by player i and by eπi = πi
(
exi, Y

′
−i
)

the payoff player i would have got by contributing the ex-post optimal amount. We

refer to exi − x′i as the ex-post adjustment gap and eπi − π′i as the ex-post payoff

impulse. If exi > x′i then learning direction theory predicts a tendency for player i

to increase her contribution. Similarly, if exi < x′i it predicts a tendency for player i

6For now, we assume there exists a unique ex-post optimum contribution. When detailing
specific experience conditions in Section 3.1 we address instances with non-uniqueness.
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to decrease her contribution.

To make quantitative predictions on changes in contributions we need to model

the strength of tendency to change contribution. We will compare and contrast two

approaches - best reply learning and impulse balance theory. Best reply learning says

that changes in contribution will be proportional to the adjustment gap. Impulse

balance theory says that they will be proportional to the ex-post payoff impulse

(Ockenfels and Selten, 2005; Selten and Chmura, 2008). Specific predictions will,

thus, depend on the vector of contributions. We, therefore, distinguish the set of

possible ex-post outcomes or experience conditions (Selten, 1998).

3.1 Experience conditions

We distinguish seven possible experience conditions. In interpretation, these classify

possible outcomes of a game, as given by a vector of contributions (x1, ...xn), into

different categories. We begin by defining the experience conditions for the case of

no refund. The conditions are defined for any player i ∈ N . To help to understand

the conditions we highlight that xi + Y−i is the total contribution and T − Y−i is the

amount player i would have needed to contribute to provide the public good. As you

work through the conditions it may be useful to refer to Figure 1 which illustrates

the conditions for the case where E > V and n = 5.7 On the horizontal axis we

measure player i’s own contribution and on the vertical axis we measure the sum of

contributions by the four other players Y−i.

Lost opportunity (LO). Total contributions were less than the threshold and the

player would have done better to contribute the amount needed to just achieve the

threshold. Formally, xi and Y−i satisfy,

xi + Y−i < T and T − Y−i ≤ min {E, V } . (LO)

The first condition says that the public good was not provided. The second condition

7These figure correspond to the High NR Treatment in our experiment, to be discussed in Section
4.
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Figure 1: The seven experience conditions when E > V and n = 5.

says that it could have been provided if player i had contributed more and that player

i’s payoff would have been higher by doing so.8 The optimal ex-post contribution is

T − Y−i and the ex-post payoff impulse is xi + V − (T − Yi).

Wasted contribution (WC ). Total contributions were less than the threshold and the

player would have done better to contribute less. Formally, xi and Y−i satisfy,

xi + Y−i < T and xi > 0 and T − Y−i > min {E, V } . (WC)

The first condition says that the public good is not provided. The third condition

says that the player either could not have done enough on her own to provide the

good or would not have had an incentive to do so. The optimal ex-post contribution

8If T − Y−i = V the player is indifferent between contributing 0 or contributing T − Y−i. So,
this can be seen as either the lost opportunity or wasted contribution experience condition. For
simplicity, we shall treat it as the lost opportunity experience condition. This was very rare in the
experimental data and so is not significant for our results.
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is 0 and the ex-post payoff impulse is xi.

Spot on contribution (SO). Total contributions are equal to the threshold and the

player benefits from the public good. Formally, xi and Y−i satisfy,

xi + Y−i = T and 0 < xi ≤ V. (SO)

There is no incentive to increase or decrease the contribution.

Overcontribution (OC ). Total contributions exceed the threshold, and the player

would have done better to contribute the amount needed to just achieve the threshold.

Formally, xi and Y−i satisfy,

xi + Y−i > T and xi > 0 and T − Y−i ≤ V. (OC)

There is an incentive to reduce the contribution. The optimal ex-post contribution is

T−Y−i if Y−i < T or 0 if Y−i ≥ T . The ex-post payoff impulse is min{xi, xi+Y−i−T}.

Excessive contribution (EC ). Total contributions exceed the threshold, but the player

does not, and cannot, benefit from the public good. Formally, xi and Y−i satisfy,

xi + Y−i ≥ T and T − Y−i > V. (EC)

There is an incentive to reduce the contribution. The optimal ex-post contribution

is 0 and the ex-post payoff impulse is xi − V .

Zero contribution (ZY, ZN ). If the player contributes 0 and could not have increased

her payoff by contributing more then there is no incentive to change her contribution.

We distinguish whether the public good is provided or not (zero yes and zero no).

Formally, xi and Y−i satisfy,

xi = 0 and Y−i ≥ T , xi = 0 and T − Y−i > min {E, V } . (1)

In the case of a full refund we distinguish the same seven possible ex-post experi-
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Table 1: The ex-post optimum, exi, the absolute value of adjustment gap, |exi − xi|,
the direction of predicted change, and the ex-post payoff impulse, eπi − πi, by expe-
rience condition.

Experience
condition

Ex-post optimum Impulse

Contribution (exi) Gap (|exi − xi|) Dir. Strength (eπi − πi)
LO (NR) T − Y−i T − Y−i − xi ↑ xi + V − T + Y−i
LO (R) T − Y−i T − Y−i − xi ↑ V − T + Y−i
WC (NR) 0 xi ↓ xi
WC (R) − − − −
SO xi 0 0 0
OC max {0, T − Y−i} min {xi, xi + Y−i − T} ↓ min {xi, xi + Y−i − T}
EC 0 xi ↓ xi − V
ZY and ZN 0 0 0 0
ZN (R) − − − −

Notes: The signs of direction are increase, ↑, decrease, ↓, ambiguous, −, no change, 0.

ence conditions but note changes to the wasted contribution and zero no conditions.

The full refund means that there is no clearly defined ex-post optimum in these two

conditions. So, there is no ex-post incentive to either increase or decrease the contri-

bution. Intuitively, one might expect an increase in contribution up to a maximum

of min {E, V }, but this is not a prediction of best reply learning or learning direction

theory. We summarize the seven experience conditions for the case of no refund and

full refund in Table 1.9

3.2 Hypotheses

Having distinguished the seven experience conditions above we now propose a set

of hypotheses that can be tested with experimental data. We begin with two hy-

potheses that state specific testable predictions of learning direction theory. The

9Different players in the same group may face different experience conditions. For example,
one player may face the lost opportunity condition while another faces the wasted contribution
condition. Similarly, one player may face the excessive contribution condition while another faces
the overcontribution condition.
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first hypothesis is a direct application of learning direction theory in saying that

players have a tendency to change contributions consistent with ex-post rationality.

It summarises the ‘Dir.’ column in Table 1.

Hypothesis 1: In the case of no or full refund a player will have a tendency to

increase her contribution in the lost opportunity experience condition and decrease

her contribution in the overcontribution and excessive contribution condition. In

the case of no refund a player will, in addition, have a tendency to decrease her

contribution in the wasted contribution condition.

Learning direction theory has previously been applied in settings where there is

always an upward or downward impulse (Selten 1998 and Selten et al. 2005). We

suggest a natural extension whereby no ex-post payoff impulse implies no tendency

to change contribution.

Hypothesis 2: In the case of no or full refund a player will have a tendency to keep

her contribution unchanged in the spot on and zero yes experience conditions and

to change her contribution in the lost opportunity, overcontribution and excessive

contribution conditions. In the case of no refund a player will, in addition, have a

tendency to keep her contribution unchanged in the zero no condition and to change

her contribution in the wasted contribution condition.

Our next two hypotheses draw on impulse balance theory and best reply learn-

ing respectively. In order to state the hypotheses we denote by xri , π
r
i and eπr

i the

contribution of player i at time r, her payoff, and the payoff that she would have

realized with the ex-post optimal amount.

Hypothesis 3 (Impulse Balance Theory): Changes in contribution tend to be pro-

portional to the strength of ex-post payoff impulse,

∣∣xr+1
i − xri

∣∣ ∝ |eπr
i − πr

i | . (2)

Hypothesis 4 (Best reply Learning): Changes in contribution tend to be propor-
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tional to the adjustment gap,

∣∣xr+1
i − xri

∣∣ ∝ |exri − xri | . (3)

Hypotheses 3 and 4 complement Hypothesis 1 by saying how much players will

tend to change their contribution. We can see from Table 1 that impulse balance

theory and best reply learning are indistinguishable except for the lost opportunity

and excess contribution experience conditions. The lost opportunity condition is

particularly interesting because the strength of ex-post payoff impulse is inversely

related to the ex-post adjustment gap. Hypothesis 3 predicts that players will in-

crease their contribution by more the closer are contributions to the threshold, be-

cause the impulse is stronger. This prediction is consistent with the evidence that

counter-factual thinking occurs more often in the case of a ‘near miss’ rather than

‘large miss’ (Kahneman and Tversky, 1982; Kahneman and Miller, 1986; De Cremer

and van Dijk, 2010).10 Hypothesis 4, by contrast, predicts that players will increase

their contribution the further are contributions from the threshold.

4 Experimental results

To evaluate our hypotheses we shall draw on data from laboratory experiments. We

use data reported in Alberti and Cartwright (2015) and Cartwright and Stepanova

(2015). We shall only provide a brief overview of the experimental procedure; for

full details see Alberti and Cartwright (2015). Subjects played the same threshold

public good game over 25 rounds using a fixed matching protocol. At the end of each

round feedback was given on own payoff, total contributions to the public good and

whether or not the public good was provided. The experiments were programmed

using z-tree (Fischbacher, 2007).

Altogether there were 8 different treatments, summarized in Table 2. The Base-

line treatment corresponds to the baseline treatment commonly used in the literature

(e.g. Croson and Marks, 2000). The High, High 2, Low and Low 2 treatments are

10See also Roese (1997) and Parks et al. (2003).
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Table 2: Summary of experimental treatments

Treatment n E V T Refund No. of subjects
Baseline 5 55 50 125 Yes 40
Baseline NR 5 55 50 125 No 40
High 5 70 50 125 Yes 30
High NR 5 70 50 125 No 45
High 2 5 55 20 50 Yes 30
Low 5 30 50 125 Yes 30
Low NR 5 30 50 125 No 45
Low 2 5 55 100 250 Yes 30

290

motivated and discussed in detail by Alberti and Cartwright (2015). The main thing

to note is that the high or low refers to a relatively high or low endowment when

compared to the threshold. The NR treatments allow insight on the consequences of

a refund (Cartwright and Stepanova, 2015). A total of 290 subjects took part in the

experiments which were run at the University of Kent.

4.1 Learning direction

We begin the analysis of the experimental data by evaluating Hypotheses 1 and 2.

At the end of each round we can work out the experience condition faced by each

subject. We also know whether a subject increased, decreased, or kept unchanged

their contribution in the subsequent round (excluding round 25). These two things

allow us to report the proportion of times subjects increased or decreased their

contribution for each experience condition, which we shall denote ρup and ρdw. We

also report the proportion of times the contribution stayed unchanged σno.

Table 3 details the number of instances of each experience condition (in the first

24 rounds), as well as ρup, ρdw and σno, aggregated across all treatments. (In the

supplementary material we provide the data broken down by treatment, where you

can see that the proportions are similar across treatments.) While the formal tests of

14



Table 3: Change of contribution in the refund and no refund treatments sorted by
experience condition

Experience
Condition

Refund treatments NR treatments

no. ρdw ρup σno no. ρdw ρup σno
LO 1009 10.4 51.1 38.5 455 16.5 48.8 34.7
WC 349 17.2 37.5 45.3 572 46.9 24.5 28.7
SO 405 11.1 15.8 73.1 279 3.2 5.7 91.0
OC 2014 38.3 12.1 49.7 1014 39.1 19.9 42.0
EC 28 53.6 7.1 39.3 26 15.4 11.5 73.1
ZY 28 − 17.9 82.1 66 − 18.2 81.8
ZN 7 − 85.7 14.3 708 − 10.0 90.0

Notes: For example, in the refund treatments, there were 1009 instances where a subject
faced the lost opportunity experience condition; in 10.4% of these instances we observed a
decrease in contribution, in 51.1% an increase, and in 38.5% no change. The proportions
in bold correspond to Hypotheses 1 and 2.

Hypothesis 1 and 2 follow immediately below, we highlight that the data summarized

in Table 3 is consistent with Hypotheses 1 and 2. For instance, we observe that ρup >

ρdw in the lost opportunity experience condition. We also observe that ρup < ρdw in

the overcontribution and excessive contribution conditions. Moreover, ρup < ρdw in

the wasted contribution condition where there is no refund. Finally, the value of σno

is, as predicted, high in the spot on, zero no and zero yes experience conditions.

To formally evaluate Hypothesis 1 we need to take into account a possible regres-

sion effect (Ockenfels and Selten, 2005). The regression effect here is that purely by

chance a large contribution is likely to be followed by a smaller contribution and a

small contribution is likely to be followed by a larger contribution.11 We, therefore,

test Hypothesis 1 against an alternative model of random choice. This alternative

model can be explained as follows: (i) In period 1 each player randomly, and in-

11This effect is unlikely to explain the data for the wasted contribution experience condition in
the case of no refund because in this case the regression effect works in the opposite direction to that
predicted by learning direction theory. For the lost opportunity and overcontribution experience
conditions the regression effect is a possible concern.
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dependently, chooses a contribution between 0 and min{E, V }.12 (ii) In periods 2

to 25 each player independently with probability s ∈ [0, 1] leaves their contribution

unchanged and otherwise randomly choose a contribution between 0 and min{E, V }.
If s = 0 then all choice is random. The higher is s the more persistence in choice.

To explain how we evaluated Hypothesis 1 against the model of random choice

consider the lost opportunity condition. In a particular group let LOup and LOdw

denote respectively the number of times (during the 25 periods for all 5 play-

ers) we observe a subject increasing or decreasing their contribution in response

to the lost opportunity experience condition. We then look at the upward ratio

LOup/(LOup + LOdw). Learning direction theory predicts this ratio would be high.

We simulated outcomes in the model with random choice (for different values of s)

and compared our observed data to that in the random model. In Table 4 we sum-

marize by treatment the average ratio we observe (Obs), what we would expect with

the random model when s = 0.5 (Ran) and the probability the observed mean would

be so high with the random model (p). Note that this test treats the group as the

unit of observation. We performed the same exercise for the overcontribution and

wasted contribution conditions with the caveat that we are now looking at whether

the observed mean would be so low. Comprehensive details on our methods and a

robustness analysis are provided in the Supplementary Material.

You can see in Table 4 that we find strong support for Hypothesis 1. We find a

significantly higher tendency to increase contributions in the lost opportunity condi-

tion and to decrease contributions in the overcontribution condition than would be

expected with random choice. The one caveat is the Low, Low NR and Low 2 treat-

ments. The issue here, however, is that a strong upward and downward tendency is

predicted with the random model and so there is little space for observed behaviour

to be significantly different. In the wasted contribution condition a highly significant

difference is apparent in the Low NR condition.

In evaluating Hypothesis 2 we note that inertia in the random model is determined

by parameter s. We cannot, therefore, directly compare with the random model.

Instead we compare across experience conditions. Consider, first, the refund setting.

12Contributions are still forced to be integers.
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Table 4: Evaluating Hypothesis 1 compared to a model of random choice (s = 0.5).

Treatment LO OC WC
Obs Ran p Obs Ran p Obs Ran p

Baseline 0.82 0.69 0.0001 0.24 0.36 0.0001 - - -
Baseline NR 0.78 0.69 0.013 0.34 0.36 0.16 0.48 0.48 0.36
High 0.82 0.69 0.004 0.21 0.36 0.0001 - - -
High NR 0.79 0.69 0.01 0.29 0.36 0.0031 0.38 0.48 0.07
Low 0.91 0.61 0.029 0.18 0.10 0.85 - - -
Low NR 0.80 0.61 0.12 0 0.10 0.34 0.29 0.48 0.0001
High 2 0.91 0.70 0.0001 0.22 0.36 0.0001 - - -
Low 2 0.85 0.55 0.048 0.25 0.06 0.99 - - -

In a particular group let Gno denote the proportion of times (during the 25 periods

for all 5 players) we observe a subject keeping their contribution unchanged when in

the lost opportunity or overcontribution experience conditions.13 Similarly, let Bno

denote the proportion of times the contribution is unchanged in the spot on and zero

yes experience conditions. Hypothesis 2 predicts that inertia difference Bno − Gno

should be relatively high. We compared the inertia difference we observe to that

expected with a model of random choice. In the no refund condition we also take

account of the wasted contribution and zero no experience conditions.

In Table 5 we detail the average inertia difference by treatment. We also detail

the probability the average is this level or higher with the random model (for three

different values of s). Full details on the procedure and results are contained in

the supplementary material. While the results are somewhat sensitive to the value

of s and treatment, you can see that we find broad support for Hypothesis 2. In

particular, the inertia difference is consistently well above zero implying that subjects

were more likely to keep contributions unchanged in the spot on, zero yes, and where

relevant zero no, experience conditions than in the lost opportunity, overcontribution

13That is, Gno = (LOno +OCno)/(LOobs +OCobs) where LOno and OCno is the number of time
during the 25 periods for all 5 players we observe a subject in the LO and OC experience condition
keeping their contribution unchanged and LOobs and OCobs denotes the number of times experience
condition LO and OC occurred.
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Table 5: Evaluating Hypothesis 2 compared to a model of random choice.

Treatment Bno −Gno ps=0 ps=0.25 ps=0.5

Baseline 0.13 0.008 0.106 0.076
Baseline NR 0.25 0.0001 0.061 0.087
High 0.42 0.0001 0.007 0.002
High NR 0.17 0.0001 0.23 0.48
Low 0.16 0.020 0.073 0.064
Low NR 0.32 0.0001 0.002 0.003
High 2 0.53 0.0001 0.0001 0.0001
Low 2 0.34 0.0001 0.0001 0.0001

and, where relevant wasted contribution, experience conditions.

4.2 Strength of impulse

We turn now to Hypotheses 3 and 4. In Table 6 we report the results of mixed

effects regressions in which we regress the change in a subject’s contribution against

the strength of ex-post impulse or adjustment gap. We, thus, compare impulse

balance theory (IBT) and best reply learning (BR). In the treatments with a full

refund the impulse in the wasted contribution experience condition is undefined. For

comparison purposes, we regress against the contribution (which equals the size of

impulse there would have been if there was no refund). The results reported in

Table 6 reaffirm evidence in support of Hypothesis 1. In particular, we observe an

increase in contributions in the lost opportunity experience condition and a decrease

in contributions in the overcontribution, excess contribution and, in the no refund

treatments, wasted contribution experience conditions. Note also that, with the

only exception of the Low treatment with refund, the results are not different across

treatments both with a full refund and no refund.

Recall that the ex-post impulse and ex-post adjustment are equivalent in the

wasted contribution and overcontribution experience conditions. Moreover, the ex-

cess contribution condition is relatively rare. Attention, therefore, in comparing
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Table 6: Mixed-effects regression results with the change of contribution as dependent
variable. Cluster robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, *
p < 0.1

Variable Refund Refund No refund No refund
IBT BR IBT BR

LO×Impulse 0.0941*** 0.0151
(0.00939) (0.0129)

LO×Adjustment 0.281*** 0.242***
(0.0189) (0.0252)

OC×Impulse -0.216*** -0.271***
(0.0153) (0.0220)

OC×Adjustment -0.196*** -0.243***
(0.0152) (0.0210)

EC×Impulse -0.452*** -0.582***
(0.0940) (0.128)

EC×Adjustment -0.102*** -0.162***
(0.0212) (0.0326)

WC×Contribution -0.0170* -0.0151
(0.00988) (0.00966)

WC×Impulse -0.402***
(0.0182)

WC×Adjustment -0.387***
(0.0178)

Low 0.740 1.366** -0.740 -0.0128
(0.532) (0.568) (0.825) (0.809)

High 0.366 0.383 -0.577 -0.364
(0.531) (0.563) (0.818) (0.803)

Low 2 -0.246 0.678
(0.532) (0.569)

High 2 -0.134 0.299
(0.533) (0.567)

Constant 0.531 -0.0582 2.651*** 1.756***
(0.368) (0.392) (0.621) (0.607)

Observations 3,840 3,840 3,120 3,120
Number of groups 32 32 26 26
AIC 24668.36 24548.13 22542.56 22445.32
BIC 24743.40 24623.17 22603.02 22505.78
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Hypotheses 3 and 4, falls on the lost opportunity condition where impulse balance

and best reply make very different predictions. Impulse balance theory suggests con-

tributions change in proportion to ex-post impulse while best reply suggests they

change in proportion to ex-post adjustment. The results in Table 6 lend support

to best reply learning (Hypothesis 4) over impulse balance theory (Hypothesis 3).

There are two pieces of evidence to support this view. First, the LO × Adjustment

coefficient is highly significant and similar to the OC × Adjustment coefficient in

both the refund and no refund setting. By contrast, the LO × Impulse coefficient is

smaller and not significant in the setting of no refund. Second, we can look at the

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). A

lower number indicates better fit and you can see that the AIC and BIC are slightly

lower in both the refund and no refund setting for the model based on best reply

learning. Our results, thus, support best reply learning over impulse balance theory,

even if the difference is relatively marginal.

5 Simulations

In the preceding section we have shown that individual behavior is consistent with

the predictions of learning direction theory. In this section we demonstrate that this

can be used to predict aggregate outcomes and in particular to predict the success

rate in providing the public good. As we highlighted in the introduction, to predict

success rates is a crucial objective of our work because there is no model in the

existing literature that comes close to predicting empirically observed success rates.

To focus the analysis we shall pay attention to the assurance problem of how to avoid

‘coordination’ on the inefficient Nash equilibrium of zero contributions (Isaac et al.,

1989). A refund should alleviate the assurance problem because it directly lowers

the cost of being short of the threshold and indirectly increases confidence others

will contribute (Isaac et al., 1989; Coats et al., 2009; see also Rapoport, 1987, and

Bchir and Willinger, 2013, for an alternative approach). The comparison between a

setting with and without a refund is, therefore, of particular interest.

In order to predict outcomes we simulate contributions over time. For complete-
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ness we introduce and discuss in turn one model based on best reply learning and

one on impulse balance theory. Let xri denote the contribution of player i in round

r. The simulation method for best reply learning can be described as follows: (1)

Individual contributions in the first period are independently determined for each

player according to a normal distribution centered on T/n with standard deviation

σ.14 (2) In subsequent rounds any player with an ex-post adjustment gap of size

∆BR changes their contribution by β∆BR where β > 0 is a parameter. Note that

∆BR can be positive (resulting in an increased contribution) or negative (resulting in

a decreased contribution). In other words, xr+1
i = min{xri + β∆BR, E} if ∆BR > 0

and xr+1
i = max{xri + β∆BR, 0} if ∆BR < 0. (3) Any player with no impulse leaves

their contribution unchanged.

This simulation method encapsulates Hypothesis 4 in a very simplistic way. We

would argue, however, that the simplicity of the method is a virtue in that we

are not imposing any assumptions on contributions other than that suggested by

Hypothesis 4. If this suffices to reliably predict the probability of the public good

being provided then we have a method that can easily be applied and extended. The

model has two free parameters, σ and β, that we discuss in turn. Values for β can be

obtained from the coefficients in Table 6. The results we report here are obtained with

β = 0.25, to approximately fit coefficients in the LO, WC and OC conditions. In the

supplementary material we show that our results remain unchanged for alternative

values of β.15

The value of σ influences the initial contribution profile and so can clearly be crit-

ical in determining the subsequent dynamics. Our choice of a distribution centered

on T/n has two appealing properties. First, T/n is a focal contribution in threshold

public good games (Isaac et al., 1989; Alberti and Cartwright, 2016). Indeed, the

14Contributions are rounded to the nearest integer and capped at 0 and E.
15There are critical values of β that do significantly affect dynamics. To illustrate, suppose

contributions are in excess of the threshold and so all players experience the overcontribution
condition. The downward adjustment in this case is proportional to the overcontribution. That
means that if nβ ≤ 1 contributions will smoothly converge to the threshold. By contrast, if nβ > 1
contributions will overshoot. The coefficients in Table 6 and the prior experimental evidence,
however, strongly suggest that overshooting is likely to occur. Within the range nβ > 1 results are
insensitive to changes in β.
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median and modal choice in the first round was T/n in all of the 8 treatments we are

studying here (with the exception of the median being 20 in the Low treatment). A

second advantage of using a normal distribution centered on T/n is that it means the

probability of providing the public good in the first round must be approximately

50 percent.16 This would seem a very neutral starting point and one that allows the

learning dynamics to determine outcomes. The results we report are obtained with

σ = 6. Again the supplementary material tests the robustness of this assumption.

Figure 2 plots the cumulative distribution of choices we observed in the first round

(in each treatment) compared to that with the fitted distribution when σ = 6. You

can see that the fit is a reasonable approximation.

The simulation method we propose for impulse balance theory differs to that

described for best reply learning in terms of step (2). We assume a potential asym-

metry between upward and downward impulse. (2a) Any player with an upward

ex-post impulse of size ∆IB increases their contribution by α∆IB where α > 0 is

a parameter. In other words, xr+1
i = min{xri + α∆IB, E}. (2b) Any player with

a downward ex-post impulse of size ∆IB decreases their contribution by γ∆IB. So,

xr+1
i = max{xri − γ∆IB, 0}. A potential asymmetry between upward and downward

impulse is considered in prior work (e.g. Selten and Chmura, 2008; Cartwright and

Stepanova, 2017). It also seems consistent with the coefficients in Table 6. We report

here results obtained with α = 0.05 and γ = 0.25.

To test the model we analyse the relationship between success rates, endowment

and refund. Cartwright and Stepanova (2015) argue that the assurance problem is

exasperated when the endowment, ceteris paribus, falls below a certain level. To

be more specific, define the endowment multiple as EM = En/T . A review of

the available experimental evidence suggested that a refund makes no difference

to success rates in providing the public good if EM > 2 but does if EM < 1.3

(where success rate is the proportion of times the public good is provided). The

gap between 1.3 and 2 exists for the simple reason that no experiments have been

run with parameters in this range. To appreciate the issue consider the left hand

16It will not be exactly 50%, depending on the treatment, because of the need to constrain
contributions within [0, E].
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Figure 2: Distribution of choices in the first round compared to a fitted normal.

side of Table 7 in which we report the observed results from the Baseline, High and

Low treatments. In the High and Baseline treatments (with an EM of 2.8 and 2.2

respectively) the success rate is essentially the same with and without the refund.

But in the Low treatment (with an EM of 1.2) the success rate drops significantly

with no refund.

On the right hand side of Table 7 we detail the predicted success rates based

on our models for best reply learning and impulse balance theory. These report the

average number of times the public good was provided over 25 rounds and so replicate

our experimental data. As you can see the predicted success rates are a reasonable

fit with the data and, crucially, pick up that the refund only makes a significant

difference in the Low treatments. We also see that best reply learning provides a
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Table 7: Observed success rates (%) comparing treatments with and without a refund
and predicted success rates (setting β = 0.25, α = 0.05, γ = 0.25, σ = 6).

Treatment EM Observed Best Reply Impulse Balance
R NR Diff R NR Diff R NR Diff

High 2.8 65 61 4 59 59 0 84 70 14
Baseline 2.2 55 50 5 59 59 0 84 70 14
Low 1.2 61 16 45 57 26 31 71 36 35

better fit than impulse balance. In Figure 3 we plot the predicted difference in success

rates due to the refund for the full range of E. Our results suggest a refund makes

a significant difference if E ≤ 40 which would equate to EM ≤ 1.6. Clearly, the

number 1.6 should not be treated as definitive, but our analysis demonstrates the

potential for learning direction theory to capture observed experimental results and

make novel predictions. In this instance, our results would suggest that the assurance

problem occurs only if the endowment is very low relative to the threshold.

6 Conclusion

Threshold public good games are of wide practical interest and the subject of a large

empirical literature. This literature has shown that groups are inefficient at providing

public goods, with success rates typically varying between 30 and 70 percent (when

the choice set is continuous). Up to this point, there was no theoretical model

that could make sense of these empirical findings. In this paper we apply learning

direction theory and show that it is consistent with observed individual behavior. We

also show that a model based on best reply learning can be used to reliably predict

aggregate success rates in providing the public good. We would argue that this

is a fundamentally important step forward in our ability to model and understand

threshold public good games.

As mentioned, our approach applies learning direction theory in saying that play-

ers will tend to change their contribution in accordance with ex-post rationality (Sel-
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Figure 3: Predicted difference in success rates due to a refund as a function of E.
Experimentally observed difference in the Low, Baseline and High treatments.

ten, 2004). We compared two models of learning consistent with learning direction

theory - best reply and impulse balance. Our results suggest that best reply learn-

ing provides a better fit with both individual level and group level data. This ‘win’

for best reply learning is, though, relatively marginal and so further work would be

desirable to explore this issue. Indeed, it may be that some players react to the

adjustment gap (best reply learning) while some may react to foregone profit (im-

pulse balance). We would, thus, see heterogeneity in learning. Exploration of this

possibility would require more detailed individual level data in the lost opportunity

experience condition.

In this paper we applied our model to study whether a refund enhances efficiency.

Our results suggest that a refund only enhances efficiency if the endowment is very

low. Thus, a refund is unlikely to be an effective way of increasing success in providing

threshold public goods, and other mechanisms or institutions are needed (Cartwright
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and Stepanova, 2015). There are many other avenues that could be explored with

the model. These include the effect that changes in the threshold for public good

provision have on success in providing the public good (Isaac et al., 1989). Also, the

effect of a rebate on contributions in excess of the threshold (Marks and Croson 1998;

Spencer et al., 2009). An additional avenue of research could be changes in the size of

strategy set. In particular, to bridge the gap between studies with a binary strategy

set (contribute or not) and those with a large, essentially continuous, strategy set

(Suleiman and Rapoport, 1992).
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1 Change of contribution by treatment

Table 1: Change of contribution in the Baseline and the Baseline NR treatments
sorted by experience condition.

Experience
Condition

Baseline Baseline NR

no. ρdw ρup σno no. ρdw ρup σno
LO 385 12.5 50.4 37.1 201 17.4 49.8 32.8
WC 49 30.6 40.8 28.6 172 45.3 29.1 25.6
SO 105 13.3 15.2 72.4 21 14.3 38.1 47.6
OC 401 48.1 15.5 36.4 432 36.1 20.6 43.3
EC 7 42.9 0.0 57.1 4 25.0 0.0 75.0
ZY 12 − 33.3 66.7 23 − 26.1 73.9
ZN 1 − 100.0 0.0 107 − 8.4 91.6

Table 2: Change of contribution in the High, High NR and High 2 treatments sorted
by experience condition.

Experience
Condition

High High NR High 2

no. ρdw ρup σno no. ρdw ρup σno no. ρdw ρup σno
LO 220 12.3 45.9 41.8 225 16.0 48.9 35.1 188 5.3 41.1 43.6
WC 34 20.6 47.1 32.4 57 61.4 24.6 14.0 12 33.3 58.3 8.3
SO 30 6.7 10.0 83.3 98 6.1 8.2 85.7 80 16.3 16.3 67.5
OC 403 33.7 10.2 56.1 567 39.5 19.9 40.6 435 41.1 14.7 44.1
EC 21 57.1 9.5 33.3 22 13.6 13.6 72.7 0 − − −
ZY 11 − 9.1 90.9 43 − 14.0 86.0 5 − 0.0 100.0
ZN 1 − 100.0 0.0 68 − 8.8 91.2 0 − − −
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Table 3: Change of contribution in the Low, Low NR and Low 2 treatments sorted
by experience condition.

Experience
Condition

Low Low NR Low 2

no. ρdw ρup σno no. ρdw ρup σno no. ρdw ρup σno
LO 123 8.9 61.8 29.3 29 13.8 41.4 44.8 93 9.7 52.7 37.6
WC 159 14.5 40.3 45.3 343 45.2 22.2 32.7 85 11.6 25.3 63.2
SO 35 2.9 20.0 77.1 160 0.0 0.0 100 155 9.7 16.1 74.2
OC 400 36.8 8.5 54.8 15 40.0 0.0 60.0 375 30.9 11.2 57.9
ZY 0 − − − 0 − − − 0 − − −
ZN 3 − 66.7 33.3 533 − 10.5 89.5 2 − 100.0 0.0

2 Testing Hypothesis 1

2.1 Lost opportunity experience condition

In Figure 1 we plot the cumulative distribution of upward ratio, LOup/(LOup+LOdw),

obtained with a model of random choice in the Baseline and High treatments. Given

that min(E, V ) is the same in all four treatments the model of random choice gives

identical predictions. We plot the distribution of the random model for s = 0 and 0.5

to provide an upper and lower ‘bound’. As you can see, the results are not sensitive

to changes in s. You can also see that the upward ratio is predicted to be around

0.6 to 0.8 illustrating the regression effect. In particular, purely by chance we would

expect an upward trend in the lost opportunity condition.

In Figure 1 we also plot the observed outcomes in the groups in the experiment

data together with a 95% confidence interval (for s = 0). You can see that several

groups have an upward tendency that is unlikely with random choice. To explain

the statistical test we report in the paper consider the Baseline treatment. Here we

have 8 groups and the mean upward ratio in those 8 groups is 0.82. We bootstrap

the probability that with 8 groups the mean upward ratio would be 0.82 or above.

For both s = 0, 0.5 the probability is p < 0.0001. Hence it is statistically unlikely we

would observe such a high upward ratio with random choice. We perform a similar
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exercise of the other 7 treatments.

Figure 1: Cumulative distribution of upward ratio in the Baseline, Baseline NR,
High, and High NR treatments with a random choice model and lost opportunity
experience condition. The observed outcomes in experimental groups.

For completeness, in Figure 2 we provide the corresponding plot for the Low,

Low NR, Low 2 and High 2 treatments. In the Low treatments distinguishing a

high upward ratio is difficult because the lost opportunity condition is rare. Hence,

the random model predicts a ratio of either 0 or 1 is common because there was

only one observation of the condition. In the High 2 treatment, by contrast, the

lost opportunity condition is more common and so it is much easier to pick out a

relatively high upward ratio.
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2.2 Overcontribution experience condition

In Figure 3 we plot the cumulative distribution upward ratio, OCup/(OCup +OCdw),

obtained with a model of random choice in the Baseline and High treatments. Here

you can see the upward ratio is relatively low indicating a tendency to decrease

contribution in the overcontribution condition even with the random model. That

said, with the exception of the Baseline NR treatment the observed upward ratio

is statistically lower than would be expected with the random choice model (see

the main paper). In Figure 4 we plot the corresponding distribution for the other

four treatments. You can see that in the Low, Low NR and Low 2 treatments an

upward ratio of 0 is highly likely with random choice. This means it is not possible

to statistically distinguish observed group outcomes from the random model.

2.3 Wasted contribution experience condition

In Figure 5 we plot the cumulative distribution upward ratio, WCup/(WCup+WCdw),

obtained with a model of random choice in the Baseline and High treatments. In

Figure 6 we plot the corresponding distribution for the Low treatments. Note that

wasted contribution only has a clearly defined ex-post payoff impulse in the no refund

treatments and so the Baseline NR, High NR and Low NR treatments are the natural

focus. You can see that in the Low NR treatment the upward ratio is relatively low.

In the Baseline NR and High NR treatments we observe no clear distinction between

observed behaviour and the random model.

3 Testing Hypothesis 2

In Figure 7 we plot the cumulative distribution of inertia difference predicted by the

random choice model in the baseline and high treatments. In Figure 8 we plot the

distribution for the low treatments and in Figure 9 we compare between the Low 2

and High 2 treatments. You can see that the inertia difference in groups is nearly

always positive, consistent with Hypothesis 2. Statistical significance drops when
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Table 4: Predictions of the best reply model as a function of σ and β. In the main
paper we report the results for σ = 6 and β = 0.25.

σ 6 6 6 6 6
β 0.15 0.2 0.25 0.3 0.35
Baseline NR 59 60 59 59 52
Baseline 59 60 59 59 52
Baseline diff. 0 0 0 0 0
Low NR 37 29 26 13 9
Low 40 44 57 55 53
Low diff. 3 15 31 41 44

Table 5: Predictions of the best reply model as a function of σ and β. In the main
paper we report the results for σ = 6 and β = 0.25.

σ 3 6 10
β 0.25 0.25 0.25
Baseline NR 60 59 55
Baseline 60 59 58
Baseline diff. 0 0 3
Low NR 30 26 11
Low 58 57 42
Low diff. 27 31 31

s = 0.5 only because this adds an element of noise to the random model and so

makes a positive inertia difference more likely.

4 Robustness of simulation results

Our simulation results for best reply learning are based on σ = 6 and β = 0.25. In

Tables 4 and 5 we provide a sensitivity analysis to changes in σ and β. As you can

see our results are robust. Only if β drops as low as 0.15 we see a notable change

in the efficiency consequences of a refund. We remind, however, that our analysis in

the main paper suggests that β is well above 0.15.

Our simulation results for impulse balance theory are based on α = 0.05, γ = 0.25
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and σ = 6. In Tables 6 and 7 we provide a sensitivity analysis to changes in the

parameters. Here you can see more variation in predictions than in the best reply

model. Moreover, the predictions fit less well with observed success rates because

they consistently overestimate success. Even so, we do observe relative consistency

in predicting the efficiency consequences of a refund.

Table 6: Predictions of the impulse balance mode as a function of α, γ and σ. In the
main paper we report the results for α = 0.05, γ = 0.25 and σ = 6.

σ 6 6 6 6 6
α 0.02 0.05 0.1 0.05 0.05
γ 0.25 0.25 0.25 0.15 0.35
Baseline NR 73 70 60 90 56
Baseline 66 84 85 90 74
Baseline diff. -7 14 25 0 18
Low NR 29 36 32 50 8
Low 63 71 75 75 58
Low diff. 34 35 43 25 50

Table 7: Predictions of the impulse balance model as a function of α, γ and σ. In
the main paper we report the results for α = 0.05, γ = 0.25 and σ = 6.

σ 3 6 10
α 0.05 0.05 0.05
γ 0.25 0.25 0.25
Baseline NR 74 70 60
Baseline 78 84 79
Baseline diff. 5 14 19
Low NR 54 36 19
Low 78 71 61
Low diff. 24 35 41
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(a) Low, Low NR

(b) Low 2

(c) High 2

Figure 2: Cumulative distribution of upward ratio in the Low, Low NR, Low 2
and High 2 treatments with a random choice model and lost opportunity experience
condition. The observed outcomes in experimental groups.
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Figure 3: Cumulative distribution of upward ratio in the Baseline, Baseline NR,
High, and High NR treatments with a random choice model and overcontribution
condition. The observed outcomes in experimental groups.
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(a) Low, Low NR

(b) Low 2

(c) High 2

Figure 4: Cumulative distribution of upward ratio in the Low, Low NR, Low 2
and High 2 treatments with a random choice model and overcontribution experience
condition. The observed outcomes in experimental groups.
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Figure 5: Cumulative distribution of upward ratio in the Baseline, Baseline NR,
High, and High NR treatments with a random choice model and wasted contribution
condition. The observed outcomes in experimental groups.
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Figure 6: Cumulative distribution of upward ratio in the Low and Low NR treatments
with a random choice model and wasted contribution experience condition. The
observed outcomes in experimental groups.
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(a) Baseline, High

(b) Baseline NR, High NR

Figure 7: Cumulative distribution of inertia difference in the Baseline and High and
Baseline NR and High NR treatments with a random choice model. The observed
outcomes in experimental groups.
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(a) Low

(b) Low NR

Figure 8: Cumulative distribution of inertia difference in the Low and Low NR
treatments with a random choice model. The observed outcomes in experimental
groups.
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(a) Low 2

(b) High 2

Figure 9: Cumulative distribution of inertia difference in the Low 2 and High 2
treatments with a random model of choice. The observed outcomes in experimental
groups.

15


