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Abstract

We develop an SIR-macroeconomic model with virus detection and inequality to study their impli-

cations for economic and health consequences during a pandemic crisis. We find a two-way relationship

between the pandemic recession and inequality that exacerbate each other although such a vicious circle

could be broken by accurate and extensive testing. This mitigation effect can be improved given com-

plementary arrangements such as social protection. The extensive virus detection could not only be a

better alternative intervention to lock-down to break the “life-or-economy” trade-off, but also prevent the

economy to be permanently damaged if there is reinfection.
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1 Introduction

The COVID-19 pandemic crisis generated far-reaching impacts on both public health and the economy. One

year after the outbreak of the pandemic, more than 520 million people have been infected with millions of

people dead. Moreover, the economic losses are unprecedently severe with many economies suffering their

largest slump in economic growth since World War Two. Moreover, the adverse effects of the COVID-19

pandemic show a heterogeneous pattern that depends on the financial vulnerability of households (see Goldin

& Muggah (2020) among others) with the poor tending to be more exposed to the pandemic than the rich.

Since the COVID-19 pandemic crisis is not an economic crisis alone, analysing the impacts of the pan-

demic requires a unified framework combining both epidemic dynamics and economic decisions. An essential

question is what factors determine the recession and recovery from the COVID-19 pandemic? The goal in this

paper is to understand the question by focusing on the interaction between an economic factor (inequality)

and pharmaceutical interventions1 (testing and quarantine). Moreover, we seek to understand the role of

virus detection in the dynamics of the pandemic crisis. This effect was not well-recognized, especially in the

early outbreak of the pandemic.

To facilitate this, we build a Susceptible-Infectious-Recovered-macro (SIR-macro) model to analyse the

recession and recovery of the pandemic crisis. Consistent with other modelling of feedbacks between an

epidemic and economic activities (Chari et al. 2021, Eichenbaum et al. 2021, Farboodi et al. 2021), our model

features both epidemiological and economic blocks with endogenous feedbacks between the two parts.

In this paper, we augment this approach in several ways. In the macroeconomic parts, we classify

household inequality by financial status. The wealthy not only earn a wage or salary but they also obtain

dividends given their ownership of firms. On the contrary, the poor have to rely on a wage or salary for living

and hence their income is more exposed than the wealthy, especially in quarantine. Such a classification of

households is consistent with data showing that the majority of net wealth is held by the top half of households

in the US (e.g. the wealthy in the model, see Figure 14 in Appendix B). Compared with SIR-macro models

including more sophisticated wealth distributions, we provide a parsimonious way to approach inequality, the

solution of which does not require nontrivial computational techniques (Debortoli & Gaĺı 2018) thus there is

no need to keep track of the distribution of wealth in the presence of pandemic evolution. Furthermore, for

the epidemiological block, we incorporate virus testing, and for infected people, we distinguish between those

detected and those undetected. The virus detection can identify undetected people who are infected and will

enter quarantine. Compared with other macroeconomic models with testing, such as Aum et al. (2021) and

Eichenbaum et al. (2022), we isolate the effect of testing and that of social protection. Accounting for this

important difference provides valuable insights highlighting the ambiguous implications of virus detection for

1There are other important factors which are addressed in the literature (Baker et al. 2020, Carroll et al. 2020, Coibion et al.
2020, Eichenbaum et al. 2021, Elenev et al. 2020, Faria-e Castro 2021, Ganong et al. 2020). In terms of the economic sides, fiscal
stimulus and loose monetary policies are adopted to support the survival of firms and households. For pharmaceutical factors,
vaccination and treatment are important to end the widespread of the virus. Some non-pharmaceutical factors, such as social
distancing and the use of face masks, are important to buy time for the arrival of pharmaceutical measures.
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the poor in the early outbreak of the pandemic. Detection is useful since it helps to cut down the transmission

path of the virus. However, the livelihood of the poor entering quarantine would significantly deteriorate in

the absence of social protection. The combination of the epidemiological and economic aspects enables us to

investigate the interaction of the virus detection and the inequality, to further shed light on the magnitude

of the recession and shapes of recovery of the pandemic crisis.

Our model delivers important findings in several aspects. Firstly, we find that the pandemic crisis has

heterogeneous effects on households with the poor being more affected due to their vulnerable income position.

In turn, the presence of inequality exacerbates the pandemic recession and also leads to a sluggish recovery.

Secondly, the adverse impacts of the pandemic crisis on both health and economic sides could be significantly

mitigated by extensive testing at the aggregate level. The virus detection can reduce infection probability,

which further encourages people to consume and work. Such an effect for the wealthy could be more apparent,

compared with the poor. For the latter, they would enjoy benefits from the testing given complementary

policies such as social protection policies which ensure their livelihood in quarantine.

Thirdly, testing and quarantine is an effective intervention tool to break the “life-or-economy” trade-

off, induced by a lock-down. This finding implies that extensive testing could be an alternative tool to

combat the pandemic crisis, and stresses the importance of medical preparedness in the early outbreak of

the COVID-19 pandemic. And fourthly, we find that testing and quarantine is beneficial if reinfection is

possible. The presence of reinfection is likely to undermine the economy permanently. Comparing the two

types of households, the poor would be more affected by the loss of immunity or virus mutation. To deal

with this situation, extensive testing could shield the economy from irreversible damage and prevent worsened

inequality.

This paper is related to the rapidly growing literature on the implications of COVID-19, in particular,

the interaction between the pandemic and the economy (Eichenbaum et al. 2021, Farboodi et al. 2021, Hall

et al. 2020). In the literature, the epidemiological evolution is integrated into economic models to address

the economic and health consequences simultaneously. Another strand of literature analyzes the dynamic

of income and/or wealth inequality during the pandemic crisis (Adams-Prassl et al. 2020, Alon et al. 2020,

Glover et al. 2020, Kaplan et al. 2020, Stantcheva 2022). Furthermore, since the pandemic crisis is not

triggered by economic factors, some papers investigate the driving factors of the pandemic recession (Baqaee

& Farhi 2020, Brinca et al. 2020, Guerrieri et al. 2020). In terms of policy interventions, the pandemic crisis

has also spurred the evaluation of the effects of non-economic policies, such as pharmaceutical and non-

pharmaceutical policies, on fighting the pandemic crisis (Acemoglu et al. 2020, Alvarez et al. 2020, Berger

et al. 2020, Brotherhood et al. 2020, Chari et al. 2021, Eichenbaum et al. 2022, Krueger et al. 2022).

We contribute to the literature by developing a simple SIR-macro model with virus detection and in-

equality. Our results provide implications for the pandemic recession, and address some potential challenges

for the recovery. In particular, we show that the virus detection and quarantine is an important element
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determining the recovery dynamics. An efficient and high level of detection rate could lead to a V-shaped

recovery while an inaccurate and low level of detection rate could relatively delay the recovery and lead it

to be U-shaped. The recovery speed could be further delayed due to the presence of income inequality. An

L-shaped recovery is likely when reinfection becomes possible and there is no sufficient detection to deal with

this situation.

The rest of the paper is organized as follows. Section 2 provides some motivational evidence followed

by Section 3 that outlines the model with virus detection and inequality. Section 4 describes our parameter

calibrations. In section 5, we present our quantitative analysis. Section 6 concludes with comments.

2 Motivational Evidence

In this section, we provide empirical evidence to support the model’s mechanism, particularly focusing on the

relationship between economic growth and inequality or virus detection in the COVID-19 pandemic period.

2.1 Inequality and growth

In this subsection, we examine the role of the pandemic in the inequality-growth relationship. To this

end, we first apply cross-sectional data in 2020 based on the World Development Indicators2 to explore the

inequality-growth relationship after the pandemic following the model specification below.3

Growthi = α0 + α1Ginii + α2Xi + εi (1)

where Growthi denotes economic growth for country i, measured by either GDP growth or GDP per capita

growth rate, Ginii represents the inequality. Xi is a set of control variables including population, CPI, lagged

GDP growth rate, lagged health expenditure, government spending, household consumption and employment.

εi denotes regression errors.

Second, the inequality-growth relationship is further investigated by employing a fixed-effect (FE) panel

data model from 2001 to 2020 in order to compare the inequality-growth relationship in general and that

specifically in the COVID-19 pandemic period. We therefore treat 2020 as the pandemic year and interact it

with the Gini coefficient and estimate the following specification (2).

Growthit = α0 + α1Giniit + α2Pandemicit + α3Giniit ∗ Pandemicit + α4Xit + α5Yi + α6Zt + εit (2)

where Pandemicit is a dummy variable (=1 if in the year 2020), capturing the effect of the pandemic, Xit

is the same control variable matrix as in Equation (1) and Yi represents the country fixed effects and Zt

2The 2020 cross-section sample includes 92 countries for which we could obtain data for the Gini coefficient.
3The selection of control variables follows the classic literature in economic growth, e.g., Barro (1996). Detailed descriptions

of the variables are included in Table 4 in Appendix B.
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represent the year fixed effects4. Importantly, the estimate of coefficient α3 captures the inequality-growth

relationship in the pandemic period.

Table 1 reports the estimated relationships between inequality and economic growth. Columns (i) and

(ii) show results based on (1), and columns (iii) and (iv) show results based on (2). The results show that

in the cross-sectional model (1) the coefficient of Gini is negative and significant, suggesting a negative

inequality-growth relationship during the pandemic. This finding is further confirmed by the panel data

model (2) which shows that the estimated coefficient for the interaction term Giniit ∗Pandemicit is negative

and significant, suggesting that the growth rate is lower in the pandemic year for a country with a higher

level of inequality. Interestingly, the estimated coefficient of Gini is positive and insignificant in the columns

(iii) and (iv), suggesting that inequality is more likely to be a drag on growth in the pandemic rather than

in normal times.

Table 1 Inequality-Growth relationship in the pandemic

Variables 2020 Cross section 2001-2020 panel

GDP growth
(i)

GDP per capita growth
(ii)

GDP growth
(iii)

GDP per capita growth
(iv)

Gini -0.118* -0.153*** 0.043 0.0269
(0.0615) (0.0584) (0.0266) (0.0268)

Gini*Pandemic -0.0719* -0.0620#

(0.0383) (0.0384)
Pandemic -5.290*** -5.332***

(1.473) (1.484)

pop 0.425 1.968*
(0.309) (1.037)

cpi -0.00162 -0.00152 -0.00339*** -0.00343***
(0.00206) (0.00196) (0.00101) (0.00102)

l.gdpg 0.00722 -0.0122 0.110*** 0.107***
(0.276) (0.261) (0.0190) (0.0192)

l.health exp -0.331 -0.933 -0.109 -0.116
(0.322) (0.302) (0.132) (0.132)

gov -0.246** -0.315** 0.0396 0.0458*
(0.122) (0.108) (0.0248) (0.0250)

con -0.0453 -0.0492 -0.0915*** -0.0977***
(0.0417) (0.0396) (0.0137) (0.0138)

employ 0.094 0.0478 0.157*** 0.0967***
(0.0621) (0.000592) (0.0307) (0.0301)

Obs 92 92 2477 2477
R2 0.2320 0.2033 0.5146 0.4847

Note: robust standard errors are reported in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1, # p = 0.1. All
variables are defined in Table 4 in Appendix B.

4Note that Pandemicit is a special term of yearly FE.

5



2.2 Testing and growth

In this subsection, we examine the test-growth relationship. As the pandemic spreads in short periods and

testing policies changes rapidly, yearly data is insufficient and might be inappropriate. Given the relative data

availability advantage of OECD countries, we focus on the quarterly panel data based on OECD countries

to estimate the relationship between COVID-19 testing and economic growth. The testing data is from

European Centre for Disease Prevention and Control (ECDC). We explore the testing-growth relationship

after the pandemic using the following specification:

Growthit = α0 + α1Testit + α2Xit + α3Yi + α4Zt + εit (3)

where Testit represents COVID-19 testing rate per 100,000 people, and Xit is a set of control variables

including population, CPI, lagged GDP growth rate, government spending, and household consumption.

Table 2 Testing-Growth relationship in the pandemic

Variables
Full
(v)

2020Q1-Q2
(vi)

2020Q3-2021Q4
(vii)

Test 0.470* 0.335 0.432*
(0.256) (0.854) (0.237)

pop 0.0128** 0.000891 0.0141***
(0.0054) (0.0165) (0.00523)

cpi 0.114*** 0.158 0.0926***
(0.0278) (0.118) (0.0257)

con -0.864 -4.559 -0.273
(0.958) (2.694) (0.907)

gov 2.390** 4.509 2.169**
(1.085) (2.823) (1.029)

inv -1.376 -0.903 -1.712*
(1.032) (2.917) (0.969)

l.gdpg -0.342*** 0.480 -0.424***
(0.0716) (0.431) (0.0656)

l.gdp -0.0275** 0.00593 -0.0295**
(0.0120) (0.0331) (0.0114)

Obs 164 22 142
R2 0.8129 0.7476 0.7009

Note: the dependent variable is GDP growth. Others are the same as above.

Table 2 presents the estimation results based on specification (3). The full sample results shown in

column (v) show that the estimated Test coefficient is positive and significant at 10% level, suggesting a

positive relationship between testing and growth. We further consider that many countries implemented job

retention schemes after the outbreak of the pandemic. Effects of such schemes may affect the testing-growth

relationship, which could be captured by the full sample regressions. Moreover, as Figure 15 in Appendix B

suggests, potentially the relationships differed over the sample period if split after the first two quarters of
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2020 given that the implementation of such schemes took time and were very limited in the first two quarters

of 2020. Hence, we conduct sub-sample regressions, splitting the sample at 2020Q3 and the results are given

in columns (vi) and (vii) of Table 2. This shows that although the estimated Test coefficient is positive over

both periods it is only statistically significant in the later stage of the pandemic, implying that testing alone

may not have been effective to combat the pandemic recession.

The motivational evidence in the sub-sections above provides empirical support to the main mechanism

of our model detailed below. In particular, the empirical results are consistent with the model predictions

that, a higher degree of inequality exacerbates the economic loss in the pandemic periods, which could be

mitigated by extensive testing provided by other rescue schemes.

3 The Model

We build an SIR-Macro model with heterogeneous agents. There are two types of households with different

equity holding: “wealthy” and “poor”. The wealthy households are owners of firms and hence enjoy dividend

payment as extra income. The poor households rely only on wages as income.

In terms of the epidemic block of the model, we incorporate testing of infected people in a conventional

SIR model (Kermack & McKendrick 1927). By doing so, we distinguish between detected and undetected

infectious people with the former entering quarantine and hence being no longer be infectious.

3.1 Firm

The representative monopolistic firm use labour Nt to produce output Yt based on the following production

function

Yt = ANt (4)

where A is the productivity of labour. The profit πf
t for the representative firm is

πf
t = ptYt −mctYt = ptANt − wtNt (5)

Optimal price setting implies that the price is equal to a mark-up λ times the marginal cost mct.

pt = λmct (6)

where λ is the price mark-up. The marginal cost and the firm profit are

mct =
wt

A
(7)

πf
t = (λ− 1)mctYt = (λ− 1)wtNt (8)
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3.2 Epidemic transition

We incorporate epidemiology dynamics that models the transition of the health status of households. The

population can be divided into four categories: susceptible (people who have not yet been exposed to the

disease), infected (people who contracted the disease), recovered (people who survived the disease and acquired

immunity), and deceased (people who died from the disease). The fractions of people in these four groups are

denoted by St, It, Rt and Dt, respectively. The number of newly infected people is denoted by Tt. Within the

It category, we further distinguish between detected and undetected infections. The former refers to infected

people who are also tested and diagnosed while the latter refers to infected people who are not tested and

unaware if they are infected. Specifically, undetected people may be asymptomatic5 or show mild symptoms

which are hard to distinguish from other disease, such as seasonal flu.6 We label these two sub-categories as

Idt and Iut respectively.

Following Eichenbaum et al. (2021), suspected people can become infected through three ways: purchasing

consumption goods, meeting at work, and random meeting with contagious people or materials.

The total number of newly infected people is given by:

Tt = π1(StC
s
t )(Iut C

iu
t )︸ ︷︷ ︸

due to consumption

+π2(StN
s
t )(Iut N

iu
t )︸ ︷︷ ︸

due to working

+π3StI
u
t (9)

where π1, π2, and π3 are parameters governing the magnitude of each source of infection. Comparing with

Eichenbaum et al. (2020, 2021), we assume that only undetected people are infectious. detected people enter

quarantine and hence they would not be infectious.

The evolution of each category of people are given by:

St+1 = St − Tt (10)

Iut+1 = Iut + Tt − (πr + πd + πu)Iut (11)

Idt+1 = Idt + πuI
u
t − (πr + πd)Idt (12)

It = Idt + Iut (13)

Rt+1 = Rt + πrIt (14)

Dt+1 = Dt + πdIt (15)

Popt+1 = Popt − πdIt (16)

where πr, πu and πd denote probability of recovery, detection and decease respectively. Note that the increase

5Long et al. (2020) find that asymptomatic patients may account 20% of infected people.
6In the early outbreak of the COVID-19, many infected people could not be tested.
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of πu may capture larger coverage of testing as in Eichenbaum et al. (2022) and more accurate testing.

3.3 Households

We classify households by health and income conditions. The potentially healthy status is defined in Section

3.2. In terms of the income status, a fraction χ of households are wealthy while the remaining 1 − χ are

poor. Both types of households enjoy wage incomes but only wealthy people are owner of firms and hence

obtain firm profits. The poor may be also interpreted as the working classes and the wealthy people as

entrepreneurs.

Next, we describe the optimization problems for each type of agent. The upper index i(i=s,iu,r) denotes

the health status and j (j=w,p) denotes the income status. The utility function (Eichenbaum et al. 2021) and

the budget constraint for a type-i,j person is

u(ci,jt , ni,jt ) = lnci,jt − θ

2
(ni,jt )2 (17)

ci,jt = wtn
i,j
t + 1πf

t (18)

where ci,jt and ni,jt denote consumption and hours worked respectively. 1 is an indicator variable equal to

one if the household is wealthy.

Susceptible people The lifetime utility of representative suspected people is

Us,j
t = u(cs,jt , ns,jt ) + β[(1 − τt)U

s,j
t+1 + τtU

iu,j
t+1 ] (19)

where τt is the infection probability

τt = π1c
s
t (I

u
t C

iu
t ) + π2n

s
t (I

u
t N

iu
t ) + π3I

u
t (20)

Optimization yields
1

cs,jt

= λs,jt + βπ1I
u
t C

iu
t (Us,j

t+1 − U iu,j
t+1 ), j = w, p (21)

θns,pt = λs,pt wt − βπ2I
u
t N

iu
t (Us,p

t+1 − U iu,p
t+1 ) (22)

θns,wt = λs,wt AΘt − βπ2I
u
t N

iu
t (Us,w

t+1 − U iu,w
t+1 ) (23)

where λst is the Lagrange multiplier associated with the budget constraint (18). Θt =
St + Iut +Rt

St + It +Rt
is an

adjustment factor, capturing that wealthy people in the infected detected category earn dividend payment

but do not work to produce output.
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Infected undetected people The lifetime utility of infected undetected people is

U iu,j
t = u(ciu,jt , niu,jt ) + β[(1 − πu − πr − πd)U iu,j

t+1 + πuU
id,j
t+1 + πrU

r,j
t+1] (24)

Optimization yields
1

ciu,jt

= λiu,jt , j = w, p (25)

θniu,pt = λiu,pt wt (26)

θniu,wt = λiu,wt AΘt (27)

Infected detected people The lifetime utility of infected detected people is

U id,j
t = u(cid,jt , nid,jt ) + β[(1 − πr − πd)U id,j

t+1 + πrU
r,j
t+1] (28)

Detected people enter quarantine immediately after detection and they would stop working (Eichenbaum

et al. 2022). Hence their wage income becomes zero. In this case, the rich consume profit income while the

consumption of the poor becomes zero. This might be an extreme assumption but it allows us to highlight

different degrees of vulnerability of households to the pandemic crisis. Moreover, this assumption is consistent

with the data used in our calibration below, which shows that the share of wealth held by the bottom half

of households (i.e., the poor in the model) is very small and they rely on wage income for living. In Section

5.3, we relax this assumption and allow households to receive social protection. Comparatively, the model

in Eichenbaum et al. (2022) implies that detected people receive consumption through government transfers.

Our model separates the wage income from government transfers thus allowing us to focus on the effect of

detection alone in our benchmark model.

Recovered people The lifetime utility of is recovered people7 is

Ur,j
t = u(cr,jt , nr,jt ) + βUr,j

t+1 (29)

Optimization yields
1

cr,jt

= λr,jt , j = w, p (30)

θnr,pt = λr,pt wt (31)

θnr,wt = λr,wt AΘt (32)

7The recovery probability may also depend on the financial condition of household. To keep traceability of the model, we do
not include this type of heterogeneity.
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3.4 Equilibrium

In equilibrium, each household optimizes their decisions and both the goods and the labour market clear.

StC
s
t + Iut C

iu
t + Idt C

id
t +RtC

r
t = ANt (33)

StN
s
t + Iut N

iu
t +RtN

r
t = Nt (34)

Ci
t = χci,wt + (1 − χ)ci,rt , i = s, iu, id, r (35)

N i
t = χni,wt + (1 − χ)ni,rt , i = s, iu, id, r (36)

4 Calibration

Table 3 reports the calibrated parameter values used for the quantitative analysis. Each period corresponds

to a week.

Table 3 Calibrated parameters

Parameters Description Value

πr recovery prob 0.3869
πd decease prob 0.0019
P0 initial population 1
t0 initial infected people 0.001
πu detection prob [0,0.6]

β discount factor 0.9992
λ price mark-up 1.35
H ss labour hour 28
A ss productivity 39.8352
χ ss share of wealthy people 0.5

In terms of the parameter values related to pandemic evolution, we closely follow Eichenbaum et al. (2021)

except for the detection rate πu which is not present in the literature. As suggested by Atkeson (2020), it

takes 18 days to recover or die from infection. Hence, we set πr +πd=7/18. The mortality rate is set as 0.5%,

falling in the range (0.4%-0.7%) suggested by the US data. This implies πd is 0.005∗7/18. Following the

estimations from Eichenbaum et al. (2021), the infection parameters π1, π2, π3 are calibrated as 7.8408∗10−8,

1.2442∗10−4, and 0.3902, respectively. In Eichenbaum et al. (2021), they estimate virus transmission related

to consumption and working, and further match π1, π2, π3 with these estimation results.

The discount factor is calibrated as 0.961/52 on a weekly basis. The steady state labour hour H and

productivity A are set as 28 and 39.8352 respectively to match the weekly working hour and income data

from the U.S. Bureau of Economic Analysis. The share of wealthy household χ is set as 0.5, consistent with
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the fact that more than 98% of net wealth is held by top 50% of wealth percentiles8. Finally, the price

mark-up λ is set as 1.35.

5 SIR-Macro Model Results

We start the analysis for the benchmark case where household incomes are equal. In such a case, the focus

is on the implications of the detection on both the health and economic aspects. Then we present results

based on the extended model with heterogeneous income and compare with the benchmark results. Through

the comparison we emphasize the roles of inequality in the pandemic recession and how the inequality is

interacted with virus detection.

5.1 Implications of the detection

Figure 1 and 2 respectively display the population dynamics and economic impacts following the outbreak of

the pandemic. For the illustration purpose, we set the detection rate as 5%. We use a relatively low detection

rate with the consideration that testing could be difficult and inaccurate at the beginning of the pandemic

outbreak. In spite of this, a more comprehensive investigation is presented later.

Figure 1 The evolution of the epidemic
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amount of people in the infected and death categories. This finding is not surprising since the detected

people would enter quarantine and hence the transmission probability would be cut down.

Turning to the economic sides, Figure 2 shows that the presence of detection could also mitigate the

magnitude of the pandemic recession. In such a case, the decline of aggregate consumption and labour hours

are dampened (see blue lines in Figure 2). Comparing the three categories of households, the recovered people

are the least affected, followed by susceptible, while infected people are the most affected. The latter result

is due to the reason that quarantined people (after detection) could not work and hence their consumption

would be also limited.

Figure 2 Impacts on consumption and hours
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Figure 3 plots impacts of the pandemic with different detection rates on consumption (left panels), hours

(middle panels), and health outcomes (right panels). Starting from the non-testing case, both the economy

and household health suffer the most from the pandemic crisis. When the detection rate increases, the

magnitude of the recession, infection, and mortality gradually dampens. For example, the largest loss of

aggregate consumption is about 5% at 10% of detection rate (green line), halved as in the case with 2.5%

of detection rate (green line). If the detection rate is even higher, say 50%, the impacts of the pandemic

on both economic and health sides could become limited. Moreover, at high detection rates, the red and

yellow lines in Figure 3 show that the evolution of the economy could exhibit different patterns compared

with the low detection case. In the former cases, the economy rebounds quickly as the transmission path

of the pandemic is quickly cut down – a V-shaped recovery. For the latter cases, low detection rates lead
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Figure 3 Impacts of different detection rates
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to sluggish containment of the pandemic and the influence on the economy is prolonged. Consequently, not

only the magnitude of the recession is more sizeable, but also the recovery is relatively slow, leading to an

U-shaped recovery.

5.2 The presence of inequality

In this section, we relax the homogeneous income assumption and allow a fraction of households, the wealthy,

to obtain all firm dividends. Figure 4 reports the impacts of the pandemic on the economy.

The upper panels of Figure 4 compare the economic dynamics at the aggregate level between the bench-

mark and the inequality cases. This shows significant differences in the response of aggregate consumption

and hours. The presence of income heterogeneity significantly exacerbates the recession, leading to a larger

magnitude of loss and slow recovery.

Moving attention to the middle panels of Figure 4, they show that the susceptible category is the most

affected due to the presence of the inequality. Compared with Figure 2, the largest loss of suspected households

could be near 30%, four times larger as in the benchmark case. While we are cautious in interpreting the

quantitative results, the sizeable difference indeed suggests a significant role of the inequality in exacerbating

the recession.

The lower panels of Figure 4 show consumption and hours for households classified by different wealthy

levels. The impacts on the rich are similar to the benchmark level, both of which are comparatively lower
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Figure 4 Impacts on consumption and hours: with inequality
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than those on the poor. Since the poor only have one source of income in the model, it is not surprising that

they are vulnerable to the pandemic crisis.

To further explore the implication of income heterogeneity, we investigate a relationship between inequality

and the magnitude of the recession. Figure 5 plots the relationship between (in-)equality and 1-year loss of

aggregate consumption. A larger (smaller) value on the horizontal axis denotes a larger degree of (in-)equality

and less (more) significant income heterogeneity. Specifically, the figure shows a positive relationship between

the magnitude of the recession and the degree of inequality. This result further corroborates the finding that

the presence of inequality exacerbates the pandemic recession. Moreover, these results are consistent with

the motivational empirical evidence presented in Section 2 (see Table 1) regarding the inequality-growth

relationship in the pandemic crisis.

After establishing the implications of the inequality, we further investigate its interaction with detection

to further shed light on the pandemic crisis. To this end, the same experiment as in Figure 3 is performed

but based on the heterogeneous income model. The results are shown in Figure 6. Contrast to the economic

impacts as in Figure 3, the magnitude of the recession does not show a monotonic decreasing relationship with

detection rates when inequality is present. Instead, the relationship is found to be nonlinear. For relatively

low detection rates (e.g., 2.5% and 5%), the magnitude of the recession increases with detection. While the
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Figure 5 Implications of inequality for consumption loss

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Degree of Equality

-25

-20

-15

-10

-5

0

%
 D

e
v
. 
fr

o
m

 I
n
it
ia

l 
S

te
a
d
y
 S

ta
te

Note: This figure shows the relationship between 1-year aggregate consumption loss and degree of inequality.

Figure 6 Impacts of different detection rates: with inequality
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relationship turns to be decreasing when detection rates become high (e.g., 25% and 50%). These findings

imply a U-shaped relationship between detection and magnitude of recession. Such a finding is confirmed in

Figure 7.

Essentially, Figure 7 shows U-shaped relationships between the detection rate and 1-year averaged con-

sumption loss at the aggregate level, for the susceptible category and poor people. On the contrary, the

relationship for wealthy people is negative. The relationship at the aggregate level (blue curve) is driven by
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Figure 7 Consumption loss and detection
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Note: This figure shows relationships between 1-year averaged consumption loss and detection for aggregate case,

suspected people, wealthy people and poor people.

the relationship between detection and poor people. As assumed by the model, the poor will lose all income

after detected as infection. On one hand, increasing the test rate would reduce transmission probability,

which encourages working and consumption, leading to less significant recession. On the other hand, higher

test rates add pressure for the poor in the fear of being detected and losing all incomes. Hence, they also

try to avoid virus transmission by cutting down consumption and working. To see the second mechanism,

we borrow the equilibrium conditions of poor people (37) and (38) for explanations.

U iu,p
t = u(ciu,pt , niu,pt ) + β[(1 − πu − πr − πd)U iu,p

t+1 + πrU
r,p
t+1] (37)

1

cs,pt

= λs,pt + βπ1I
u
t C

iu
t (Us,p

t+1 − U iu,p
t+1 ) (38)

According to eq (37), the increase of detection rate πu decreases lifetime utility for the poor if they are

infected. Given others as constant, the utility gap Us,p
t+1−U

iu,p
t+1 would be broadened. With this consideration,

the suspected poor people could reduce consumption, as implied by eq (38).

The two counteracting forces play quantitatively different roles at different detection levels. Our results

imply that the former force would be relatively more powerful when the detection rate becomes high. In

terms of wealthy people, they have an alternative source of income. Even under quarantine, they can still

earn dividends owing to their firm ownership. Hence, the role played by the second mechanism may not

overweight the first one; the wealthy benefit more from detection than the poor for the economic side.

Despite the asymmetric economic impacts of detection, its effects on health outcomes are positive for both

the 2 groups of people. By visual check, we find the health outcomes in Figure 6 and Figure 3 do not show

a notable difference.
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Given that the low-detection region is likely to be coincident with the initial outbreak of the pandemic,

the heterogeneous implications of the detection is also consistent with the motivational evidence presented

in Section 2 (Table 2). Due to the presence of inequality, detection alone at relative low level is not effective

to combat the pandemic crisis. In the next Section, we consider a complementary arrangement which could

mitigate the sided effects of low detection and deliver monotonic beneficial effect of detection as suggested

by column (i) and (iii) in Table 2.

5.3 Roles of social protection

Figure 8 Consumption loss and detection: with social protection
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Note: This figure shows relationships between 1-year averaged consumption loss and detection for aggregate case and

poor people.

Section 5.2 establishes nonlinear impacts of detection for the poor due to their financial vulnerability.

In this subsection, an extended case that quarantined people are protected by the social security system is

considered. Even if they cannot work after detection, they can obtain government transfers which are used for

consumption. We assume that the transfer amount is equal to the income of recovered people (Eichenbaum

et al. 2022). In this case, cid,pt = cr,pt , and cid,wt = cr,pt + πf
t . Such an extended case is also consistent with

income support programs implemented in many countries.9

We highlight relationships between the detection rate and consumption loss for the aggregate case and

poor people in Figure 8. There are 2 important differences after accounting for the social protection for

detected people. First, the relationships are likely to be monotonic and negative with social protection,

implying that the livelihood for the poor under quarantine would no longer be a major threat. Second, the

presence of social protection also dampens the magnitude of the recession given others as constant. For

9For example, the UK implemented a COVID-19 job retention scheme or furlough scheme in 2020. The scheme is a type of
wage subsidy program aiming to support employees who are on furlough to receive some grants. The government is the major
payer for this scheme.
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instance, at 20% of detection rate, the 1-year aggregate consumption loss is 0.3% in Figure 8 while that loss

is 4% in the absence of the social protection (see Figure 7). Finally, our finding is consistent with literature

showing that government interventions could reduce inequality (Stantcheva 2022).

5.4 Lock-down v.s. testing

During the pandemic crisis, many countries implemented containment policies such as lock-downs to prevent

the transmission of the Covid-19. In this section, we compare the effects of the lock-down with testing.

In particular, we compare the evolution of the epidemic in three cases: (1) a lock-down as described in

Eichenbaum et al. (2021) without detection, (2) relatively low detection rate (5%) without lock-down, and

(3) relatively high detection rate (20%) without lock-down.

With the containment policy, the budget constraint for a type-i,j person becomes

(1 − µt)c
i,j
t = wtn

i,j
t + 1πf

t + Γt (39)

where µt captures the containment rate, modelled as a tax on consumption, analogous to Farhi & Werning

(2014). The proceeds due to the containment are rebated lump sum to all agents Γt.

Figure 9 Impacts on consumption and hours: lock-down v.s. testing
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Figure 9 shows the evolution of consumption and hours at the aggregate level, and consumption for

suspected and infected people. With 20% of detection rate, the economy is strongly hit by the pandemic

crisis at the beginning but recover quickly. If the detection rate becomes 5%, the recession is more significant
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Figure 10 The evolution of the epidemic: lock-down v.s. testing
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and the recovery becomes more sluggish, despite a smaller initial response. In another case with lock-down

but no detection, the evolution of the aggregate economy is similar to the low-test case.

In terms of the health outcomes, Figure 10 shows the evolution of people in different healthy categories.

Not surprisingly, the relatively high detection rate leads to the least infection and death. Comparing the

low-test case with the lock-down, we find that the testing, even at the relatively low level, could lead to fewer

people being infected and dead. Moreover, Figure 9 and 10 together suggest an interesting finding. Between

testing and lock-down leading to the similar aggregate economic performance in the pandemic crisis, the

case with testing could be more effective in containment of the virus transmission, thereby leading to better

health outcomes. We therefore interpret the testing case as smart quarantining with specific targets while

the lock-down as massive quarantine. In this sense, the former measure is not surprisingly seen to be a more

efficient tool to fight the pandemic crisis.

5.5 An attempt to relax no-reinfection assumption

In the model, we assume that recovered people have sufficient immunity so that they would not be affected

again. If the mass majority of people obtains immunity, either through vaccination or recovery after infection,

the spread of the pandemic would be unlikely, implying that herd immunity occurs. However, it remains

questionable if the no-reinfection assumption holds. Medical research finds that the antibody of SARS-CoV-2

starts to decrease within 2–3 months after infection (e.g., Long et al. (2020)). The duration of the immunity

might be shorter than other SARS-CoV or MERS-CoV. Furthermore, some recovered people got infection
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again though this probability is low. Moreover, we observed frequent mutations of SARS-CoV-2, such as

the Delta and the Omicron variant. All these facts and findings call for investigation of implications of the

pandemic when reinfection is possible. Hence, we relax the no-reinfection assumption in this subsection.

By doing so, we attempt to analyze the implication of the pandemic crisis for the recession and subsequent

recovery in this extended case.

Taking into account the immunity lost, the evolution of susceptible and recovered people become as follows

St+1 = St − Tt + πsRt (40)

Rt+1 = Rt(1 − πs) + πrIt (41)

where πs denotes the immunity loss rate. Equation (40) and (41) suggest that each period a fraction of

recovered people becomes susceptible. The presence of the immunity lost will also change lifetime utility for

recovered people.

Recovered (R)

max
crt ,n

r
t

Ur
t = (lncrt −

θ

2
nrt ) + β[(1 − πs)Ur

t+1 + πsUs
t+1]

To begin with, we set πs at 5%, implying that on average recovered people may significantly lose antibodies

about 5 months after recovery. Note that this ratio may not be a rigorous value and it is mainly served as

illustration purpose.

Figure 11 Impacts on consumption and hours: with reinfection
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Figure 11 shows the evolution of the economy in the extended case. It shows that the pandemic could

permanently affect the economy, leading to irreversible damage – a L-shaped recovery. For example, the

aggregate consumption would be about 20% less than the pre-crisis level for one year after the pandemic

outbreak, contrast to the benchmark case where consumption starts to recover to the pre-crisis level at that

time. The lower panels of Figure 11 further shows that the impacts on households with different wealth levels

also differ; the poor household is more affected. In spite of this difference, both types of households would

suffer from permanent loss of consumption. The rationale is that the virus would exist with people in the

long-run who have to permanently reduce consumption and working to avoid being infected.

Figure 12 Consumption loss and immunity loss rate
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Note: This figure shows relationships between 4-year averaged consumption loss and immunity loss rate for aggregate

case, suspected people, wealthy people and poor people. For each case, we further classify it by a relatively low

detection rate (10%, red lines) and a relatively high detection rate (20%, green lines).

We further investigate relationships between the magnitude of the consumption loss and immunity loss

rate, as depicted in Figure 12. Since the reinfection is more likely to affect long-run dynamics of the pandemic

recession as shown in Figure 11, we show 4-year averaged consumption loss rather than the 1-year loss in

Figure 12. In general, this figure shows positive relationships between the speed of losing the immunity and

magnitude of consumption loss. Comparatively, the relationships are much steeper when the detection rate

is relatively low. In particular, the most pronounced impacts are found from the poor, indicating that they

are more likely to suffer from the immunity loss issue than the rich. The decision of economic activities for

the poor could be the most sensitive to the strength of antibody. On the contrary, the relationships become

insensitive when the detection rate is relatively high. Therefore, the presence of reinfection might exacerbate

inequality in the pandemic recession given the relatively low detection rate. However, accurate and extensive

testing could be helpful to deal with the reinfection issue, to prevent deep recessions and enlarged inequality.

Finally, we investigate how the testing may interact with the immunity loss issue. Figure 13 shows that
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Figure 13 Consumption loss and detection: with reinfection
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Note: This figure shows relationships between 4-year averaged aggregate consumption loss and detection rate. We

include 3 cases in the figure: no-reinfection (blue), a relatively low immunity loss rate (5%), and a relatively high

immunity loss rate (10%).

high detection rates could significantly mitigate the adverse effects due to the reinfection. For example, the

gap between the red line and the blue line in Figure 13 becomes negligible with high detection rates. This

finding implies a complementary role of detection to the vaccine in rescue. Even if effects of the vaccine

might not be long-lasting or weakened, e.g., due to potential mutation of the virus, efficient and swift tests

could be useful.

6 Conclusion

The COVID-19 pandemic raised challenges for the economics researchers to address both the economic and

health consequences of the crisis, resulting in the publication of studies addressing the interaction between the

epidemic and the economy. This paper further that literature by addressing an additional set of important

implications of the pandemic crisis, and shedding light on the recession and recovery of the crisis. To achieve

this, we develop a SIR-macro model with virus detection and income inequality for households. Essentially,

we find a two-way relationship between the pandemic recession and inequality, both of which can exacerbate

one another. We show that such a vicious circle could be broken by accurate and extensive testing. In order

to maximize the benefits of the virus detection, especially for the poor, some complementary arrangements

such as social protection should be provided. These policies are important for the containment of the virus

in the early outbreak of the pandemic when testing capacity and accuracy were low.

Our framework provides important insights based on a simple model, highlighting several fundamental

forces of the pandemic crisis. Further research could therefore enhance our framework by incorporating some

important real-world factors such as considering the role of monetary and fiscal policies in the dynamic of
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inequality during the pandemic recession. Moreover, it is important to consider sector heterogeneity and

study the supply-sided implications to further identify the long-run effects of the COVID-19 pandemic.
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Appendix A Equilibrium Conditions
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Appendix B Data

Table 4 Data used in the empirical analysis

Variables Description Source

Growth
GDP Growth WDI, OECD
GDP per capita Growth WDI

Gini Gini index WDI, SWIID
Test Weekly testing rate per 100000 people ECDC
pop Population, total WDI
cpi Consumer price index (2010 = 100) WDI, OECD
gov General government final consumption expenditure (% of GDP) WDI, OECD
con Households and NPISHs final consumption expenditure (% of GDP) WDI, OECD
inv Gross capital formation (% of GDP) WDI, OECD
health exp Domestic general government health expenditure (% of GDP) WDI
employ Employment to population ratio, 15+, total (%) (modeled ILO estimate) WDI

Note: WDI represents World Development Indicators, OECD represents OECD quarterly national account
database, SWIID represents the Standardized World Income Inequality Database, and ECDC represents Eu-
ropean Centre for Disease Prevention and Control COVID-19 datasets. Yearly data of controls are obtained from
WDI, while quarterly data are from OECD. The missing value of Gini is interpolated according to the previous
data and other development Indicators. Test data are aggregated from weekly to quarterly frequency.
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Figure 14 Net wealth in the US: comparing the top and bottom 50%
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Source: the Distributional Financial Accounts, https://www.federalreserve.gov/releases/z1/dataviz/dfa/index.html

Figure 15 Testing and growth
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